If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16x^2=20
We move all terms to the left:
16x^2-(20)=0
a = 16; b = 0; c = -20;
Δ = b2-4ac
Δ = 02-4·16·(-20)
Δ = 1280
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1280}=\sqrt{256*5}=\sqrt{256}*\sqrt{5}=16\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{5}}{2*16}=\frac{0-16\sqrt{5}}{32} =-\frac{16\sqrt{5}}{32} =-\frac{\sqrt{5}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{5}}{2*16}=\frac{0+16\sqrt{5}}{32} =\frac{16\sqrt{5}}{32} =\frac{\sqrt{5}}{2} $
| √4x+1=5 | | 1+7p=5p+1 | | 45n=48 | | N=10x-6- | | 2(6+x)=8+4x | | 3*(x-4)=15 | | y+5/6=1/5 | | 1-h=23 | | 1-h=2 | | y-2-y=3-5 | | 8/y=5/11 | | 4+3+p=16 | | -3b+2.5=4−3b+2.5=4 | | x+4/12=2 | | x+(0.05x)=55 | | 18x-40=22 | | (2b/3)5=3 | | 2y–25=19 | | 10-1/2x=36 | | 5+16x=9x+10 | | n=256−−−√3 | | 7x−17+8x−13=180 | | 7a+2a-10=61 | | v/3-3=3 | | -0.6x+4.62x=3.6x | | n/2-2=3 | | (X)=9x-6 | | 15=7x-4x-15 | | -2=(2x+8) | | -8q2+8q+6=0 | | 4x-7.1=3x+2.6= | | X2-7x-144=0 |